

HyperNO

NON-ORIENTED ELECTRICAL STEEL FOR EV TRACTION MOTOR

Contents

Pohang & Gwangyang steelworks	04
Worldwide network for electrical steel	06
History of POSCO and Electrical steel	07
Manufacturing processes & equipment	08
Material properties for Better EV motor	09
POSCO Hyper NO Line-up	09
New PNX Core	10
PNX-FY Core	12
PNX Core	14
PNF Core	16
Insulation Coating	18
Solution support for EV traction motor development	19
Motor design and analysis examples	21
Self-Bonding Technology	22

NON-ORIENTED ELECTRICAL STEEL FOR EV TRACTION MOTOR

Pohang & Gwangyang steelworks

Pohang Steelworks

Upon completion of its first-phase manufacturing facility in 1973, Pohang Steelworks, Korea's first integrated steel mill, was finally completed after 4 stages of construction at Young-il Bay in February 1981.

POSCO is capable of producing and processing a variety of carbon steels and stainless steels. The company's global competitiveness was further enhanced when we opened the world's first FINEX commercialization facility in May 2007.

Main products _ Hot-rolled steel, Plate, Cold-rolled steel, Wire rod, Electrical steel, Stainless steel, API steel, etc. Crude steel production _ 16,852 million tons (as of 2021)

Gwangyang Steelworks

Gwangyang Steelworks is the world's largest integrated steel mill which features an optimal layout for processing carbon steel.

Products from Gwangyang works include automotive steel, high-strength hot rolled steel, high-quality API steel, and thick plates among other products. With the goal of specializing in the manufacturing of the world's best automotive steels, Gwangyang Steelworks focuses on enhancing its competitive edge. The new Electrical Steel plant is completed in October 2023.

Main products _ Hot-rolled steel, Plate, Cold-rolled steel, Car steel, API steel, Electrical Steel etc. Crude steel production _ 21,412 million tons (as of 2021)

Creation of customer value by securing product quality and cost competitiveness

Realization of symbiotic values through the establishment of a robust industrial ecosystem with suppliers, partners, and customers

Development of quality and top-notch products that can impress our customers
Creating customer value by securing cost competitiveness with suppliers and partners
Robust facility implementation and smart facility management that can be called the cornerstone of production and quality

POSCO Non-Oriented Electrical Steel 6

Electrical Steel milestone

2005

2015

Manufacturing processes & equipment

Cutting-edge facilities and state-of-art technologies enable us to meet customer's request for high quality products. Every process is controlled automatically to keep the best quality of products.

Non-oriented electrical steel

Material properties for Better EV motor

EV driving requires advanced properties of electrical steel

Speed – Torque Characteristics of Traction Motor

Hyper NO was developed based on properties for EV motor

Line up

POSCO Hyper NO for EV Traction motors are represented by these series: New PNX, PNX-FY, PNX, PNF series.

※ All values are informative purpose only

Note) Pilot development and commercial production grades are included.

Preliminary Annealing

In this process, scales on the surface of hot rolled coil are removed by scale breaker and hydrochloric acid cleaning. This process improves cold rolling properties of steel as well as it's magnetic properties.

Cold Rolling

In order to obtain specific thickness and material properties, cold rolling process should be conducted. For uniform thickness and width of strip, this process is controlled automatically.

Annealing

Annealing is a recrystallizing process of hardened cold rolled structures by heat treatment. There are two annealing processes for grain-oriented electrical steel : decarbonization and high temperature annealing. During decarbonization annealing, excess carbon in the steel is removed and MgO coating is applied on the surface of the steel. High temperature annealing produces secondary recrystallized structures having superior magnetic properties. Non grain-oriented electrical steel is recrystallized and insulation coating is applied during annealing process.

Insulation Coating

In this process, insulation coating is applied continuously to minimize eddy current losses, which are proportional to the sheet thickness. Grain-oriented electrical steel has two layers of coating; one is base coating with dark brown color which consists of Forsterite(Mg2SiO4), and the other is transparent insulation coating containing phosphates. For non grain-oriented electrical steel, there are various types of coating according to final usage and customer's requests.

- Low Core Loss(at high frequencies)

Speed

	New PNX series : lower core loss and higher strength
0PNX1150F 	High strength PNX-FY series : high strength
	PNX series : low core loss and high strength
	PNF Series : low core loss at high frequency
00F	 New PNX series High strength PNX series PNX series PNF Series
10 W10 (W/	i /400 (Kg)

New PNX Core

New PNX Core

PNX-Core is optimized core for traction motor in electrical vehicle(EV). It has lower core loss at high frequencies, and has higher mechanical strength compared PNX core.

Standard Size

Product	Grade	Thickness mm. (in)	Width mm. (in)	Inner diameter mm. (in)	
PNX-Core	20PNX1150F	0.20(0.0079)			
	25PNX1200F	0.25(0.0098)	950~1250 (37.4~49.2)	508 (20)	
	27PNX1300F	0.27(0.0106)			

Note) For non-standard sizes, please contact us.

Specification

Magnetic properties and lamination factors

Grade	Density (kg/dm³)	Max Core Loss, W/kg 1.0T/400Hz	Magnetic Flux Density Min. T (B50)	Lamination Factor, Min. (%)
20PNX1150F	7.60	11.5	1.60	93.0
25PNX1200F	7.60	12.0	1.60	93.5
27PNX1300F	7.60	13.0	1.61	94.0

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1),

using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

2. W10/400 indicates the core loss at the frequency of 400 Hz and magnetic flux density of 1.0T.

3. B50 indicates the magnetic flux density at 5000A/m

Dimension & Shape Tolerance

Thickness mm. (in)	Thickness Tolerance mm. (in)	Thickness deviation in Width mm. (in)	Width Tolerance mm. (in)	Camber (Length: 2m) mm. (in)
0.20 (0.0079)	±0.020 (0.00079)			
0.25 (0.0098)	±0.025 (0.00098)	0.02 (0.0008) and under	+1.5 (0.0591)	1.0 (0.0394) and under
0.27 (0.0106)	±0.027 (0.00106)			

Typical Electrical and Magnetic Properties

Magnetic properties and lamination factors

Grada	Resistivity		Core Los	ss, W/Kg		Magnetic Flux Density,		
uidue	(×10-8)	1.5T/50Hz	1.0T/400Hz	1.0T/800Hz	1.0T/1000Hz	B25	B50	B100
20PNX1150F	65	2.01	10.6	27.6	38.1	1.52	1.62	1.76
25PNX1200F	65	1.97	11.7	32.5	45.6	1.54	1.63	1.75
27PNX1300F	65	1.94	12.0	33.6	47.5	1.55	1.64	1.75

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

Typical Mechanical Property and Lamination Factor

Grade	Tensile Strength (MPa)		Yield Point (MPa)		Elongat	tion (%)	Hardness	Lamination
	L	С	L	С	L	С	Hv1	Factor (%)
20PNX1150F	562	577	457	458	16	17	237	96.5
25PNX1200F	575	582	468	472	17	18	232	97.0
27PNX1300F	579	586	458	467	18	19	238	97.0

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction

3. Specimens with C-6H or NS coating are used for lamination factor test.

New PNX Core

PNX–FY Core

PNX-FY Core

PNX-FY Core has higer mechanical strength optimized core for traction motor in electrical vehicle(EV) compare to PNX core.

Standard Size

Product	Grade	Thickness mm. (in)	Width mm. (in)	Inner diameter mm. (in)	
	20PNX1250FY 0.20 (0.0079) 25PNX1300FY 0.25 (0.0098) 950~1250				
			F00 (00)		
PNX-FY Core	27PNX1400FY	0.27 (0.0106)	(37.4~49.2)	508 (20)	
	30PNX1500FY	0.30 (0.0118)			

Note) For non-standard sizes, please contact us.

Specification

Magnetic properties and lamination factors

Grade	Density (kg/dm³)	Max Core Loss, W/kg 1.0T/400Hz	Magnetic Flux Density Min. T (B50)	Lamination Factor, Min. (%)	Yield Point Min (MPa)
20PNX1250FY	7.60	12.5	1.59	93.0	420
25PNX1300FY	7.60	13.0	1.60	94.0	420
27PNX1400FY	7.60	14.0	1.61	94.0	420
30PNX1500FY	7.60	15.0	1.61	95.0	420

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1),

using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

2. W10/400 indicates the core loss at the frequency of 400 Hz and magnetic flux density of 1.0T.

3. B50 indicates the magnetic flux density at 5000A/m

Dimension & Shape Tolerance

Thickn mm. (ess in)	Thickness Tolerance mm. (in)	Thickness deviation in Width mm. (in)	Width Tolerance mm. (in)	Camber (Length: 2m) mm. (in)						
0.20 (0.0)079)	±0.020 (0.00079)									
0.25 (0.0)098)	±0.025 (0.00098)	0.02	+1.5	1.0						
0.27 (0.0)106)	±0.027 (0.00106)	and under	(0.0591)	and under						
0.30 (0.0)118)	±0.030 (0.0012)									
Nata) Thislusses d											

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

Typical Electrical and Magnetic Properties

Magnetic properties and lamination factors

Grade	Resistivity	Core Loss. W/Ka				Mao	netic Flux Der	isitv.
	Ω•m (×10-8)	1.5T/50Hz	1.0T/400Hz	1.0T/800Hz	1.0T/1000Hz	B25	B50	B100
20PNX1250FY	59	2.03	11.1	29.3	40.5	1.55	1.65	1.76
25PNX1300FY	59	2.08	12.1	33.5	47.1	1.56	1.65	1.76
27PNX1400FY	59	2.23	13.3	38.5	51.1	1.57	1.66	1.77
30PNX1500FY	59	2.26	14.1	40.5	58.1	1.57	1.66	1.77

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

Typical Mechanical Property and Lamination Factor

Grada	Tensile Strength (MPa)		Yield Point (MPa)		Elongat	tion (%)	Hardness	Lamination
ulaue	L	С	L	С	L	С	Hv1	Factor (%)
20PNX1250FY	565	571	445	452	16	15	232	96.5
25PNX1300FY	570	577	448	456	18	17	231	97.0
27PNX1400FY	572	578	450	459	19	18	232	97.0
30PNX1500FY	573	579	450	457	20	19	230	97.5

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction

3. Specimens with C-6H or NS coating are used for lamination factor test.

PNX–FY Core

PNX-Core

PNX Core

PNX-Core is optimized core for traction motor in electrical vehicle(EV). It has low core loss at high frequencies, and has high mechanical strength for excellent endurance.

Standard Size

Product	Grade	Thickness mm. (in)	Width mm. (in)	Inner diameter mm. (in)		
PNX-Core	20PNX1200F	0.20 (0.0079)				
	25PNX1250F	0.25 (0.0098)	950~1250	F00 (00)		
	27PNX1350F	0.27 (0.0106)	(37.4~49.2)	506 (20)		
	30PNX1450F	0.30 (0.0118)				

Note) For non-standard sizes, please contact us.

Specification

POSCO Non-Oriented Electrical Steel

14

Magnetic properties and lamination factors

Grade	Density (kg/dm³)	Max Core Loss, W/kg 1.0T/400Hz	Magnetic Flux Density Min. T (B50)	Lamination Factor, Min. (%)
20PNX1200F	7.60	12.0	1.60	93.0
25PNX1250F	7.60	12.5	1.63	93.5
27PNX1350F	7.60	13.5	1.63	94.0
30PNX1450F	7.60	14.5	1.64	94.5

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1),

using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

2. W10/400 indicates the core loss at the frequency of 400 Hz and magnetic flux density of 1.0T.

3. B50 indicates the magnetic flux density at 5000A/m

Dimension & Shape Tolerance

Thickness mm. (in)	Thickness Tolerance mm. (in)	Thickness deviation in Width mm. (in)	Width Tolerance mm. (in)	Camber (Length: 2m) mm. (in)
0.20 (0.0079)	±0.020 (0.00079)			
0.25 (0.0098)	±0.025 (0.00098)	0.02	+1.5	1.0 (0.0394) and under
0.27 (0.0106)	±0.027 (0.00106)	and under	(0.0591)	
0.30 (0.0118)	±0.030 (0.0012)			

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

Typical Electrical and Magnetic Properties

Magnetic properties and lamination factors

Grado	Resistivity		Core Los	ss, W/Kg	Magnetic Flux Density,			
ulaue	(×10-8)	1.5T/50Hz	1.0T/400Hz	1.0T/800Hz	1.0T/1000Hz	B25	B50	B100
20PNX1200F	59	2.06	10.9	29.0	40.2	1.54	1.64	1.77
25PNX1250F	59	1.97	12.1	33.9	47.7	1.56	1.65	1.78
27PNX1350F	59	1.98	12.7	35.9	50.9	1.57	1.66	1.78
30PNX1450F	59	2.00	13.8	39.8	57.1	1.57	1.66	1.78

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

Typical Mechanical Property and Lamination Factor

Crodo	Tensile Strength (MPa)		Yield Point (MPa)		Elongation (%)		Hardness	Lamination
diade	L	С	L	С	L	С	Hv1	Factor (%)
20PNX1200F	557	563	429	436	15	14	225	96.5
25PNX1250F	565	569	438	447	18	17	230	97.0
27PNX1350F	559	565	430	437	19	18	225	97.0
30PNX1450F	561	566	431	438	19	18	228	97.5

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction

3. Specimens with C-6H or NS coating are used for lamination factor test.

25PNX1250F Iron loss curve 1.0 0.9 0.8 0.7 Ē 0.6 0.5 0.4 0.3 Š 0.2 0.1 0.01 0.1

PNX Core

PNF Core

PNF Core

PNF-Core has excellent magnetic properties at high frequencies. It is suitable for motors which needs low core loss at high frequencies.

Standard Size

	Product	Grade	Thickness mm. (in)	Width mm. (in)	Inner diameter mm. (in)	
		20PNF1200	0.00.00.0000			
	PNF Core	20PNF1500	0.20 (0.0080)			
		25PNF1400 0.25 (0.0098)		950~1250	500 (20)	
		27PNF1500	0.27 (0.0106)	(37.4~49.2)	506 (20)	
		30PNF1600	0.30 (0.0118)			
		35PNF1800	0.35 (0.0138)			

Note) For non-standard sizes, please contact us.

Specification

Magnetic properties and lamination factors

Grada	Density	Max Core Loss, W/kg	Magnetic Flux Density	Lamination Factor, Min. (%)	
uraue	(kg/dm³)	1.0T/400Hz	Min. T (B50)		
20PNF1200	7.60	12.0	1.61	93.0	
20PNF1500	7.65	15.0	1.62	93.0	
25PNF1400	7.60	14.0	1.62	93.5	
27PNF1500	7.60	15.0	1.63	94.0	
30PNF1600	7.60	16.0	1.64	94.5	
35PNF1800	7.60	18.0	1.65	95.0	

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1),

using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

2. W10/400 indicates the core loss at the frequency of 400 Hz and magnetic flux density of 1.0T.

3. B50 indicates the magnetic flux density at 5000A/m

Dimension & Shape Tolerance

Thickness mm. (in)	Thickness Tolerance mm. (in)	Thickness deviation in Width mm. (in)	Width Tolerance mm. (in)	Camber (Length: 2m) mm. (in)
0.20 (0.0080)	±0.020 (0.0008)			
 0.25 (0.0098)	±0.025 (0.00098)		+1.5 (0.0591)	1.0 (0.0394)
0.27 (0.0106)	±0.027 (0.00106)	Max 0.02 (0.0008)		
 0.30 (0.0118)	±0.030 (0.0012)	()	()	and under
0.35 (0.0138)	±0.035 (0.0014)			

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

Typical Electrical and Magnetic Properties

Magnetic properties and lamination factors

Grada	Resistivity		Core Los	ss, W/Kg	Magnetic Flux Density,			
uraue	(×10-8)	1.5T/50Hz	1.0T/400Hz	1.0T/800Hz	1.0T/1000Hz	B25	B50	B100
20PNF1200	59	1.98	10.9	29.2	40.7	1.54	1.63	1.78
20PNF1500	50	2.56	13.3	34.2	47.0	1.57	1.66	1.78
25PNF1400	58	2.13	12.8	35.3	49.8	1.57	1.66	1.76
27PNF1500	58	2.14	13.2	36.8	51.3	1.57	1.65	1.76
30PNF1600	59	2.16	14.4	41.5	59.3	1.57	1.66	1.77
35PNF1800	59	2.19	16.5	50.1	72.4	1.57	1.66	1.77

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

Typical Mechanical Property and Lamination Factor

Crada	Tensile Strength (MPa)		Yield Point (MPa)		Elongation (%)		Hardness	Lamination
uraue	L	С	L	С	L	С	Hv1	Factor (%)
20PNF1200	490	500	380	390	15	16	215	96.5
20PNF1500	471	490	363	381	17	19	195	97.0
25PNF1400	530	541	405	411	17	18	224	97.0
27PNF1500	535	543	405	412	17	18	225	97.0
30PNF1600	535	545	416	426	18	19	224	97.5
35PNF1800	536	546	418	428	19	20	224	97.5

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction

3. Specimens with C-6H or NS coating are used for lamination factor test.

PNF Core

Insulation Coating

POSCO insulation coating

POS	5CO	Gen (Chroma	eral ite base)	(P	Eco-friendly hosphate bas	se)	Self bonding	Remark	
Guaun	g iype	С6-Н	С9-Н	NS	NM	NT	SP		
Comp	osition	Organic + Inorganic	Organic + Inorganic	Organic + Inorganic	Organic + Inorganic	Organic + Inorganic filler	Organic + Inorganic		
Thickness (typ	(µm/side) ical)	0.5~1.0	1.2~1.8	0.5~1.0	1.2~1.8	5.0~7.0	1.0~2.0		
Coatin	g side	Both side	Both side	Both side	Both side	Both side	Both side		
Resistivity	Before SRA	0.5	5.0	0.5	5.0	50	2.0	ASTM A 717 SRA	
(typical)	After SRA	0.1	0.5	0.1	0.5	SRA not Accepted	SRA not Accepted	Condition : 750°Cx2hr in DX rich gas	
Heat	Continuous	Not recognized	Not recognized	Not recognized	Not recognized	SRA not Accepted	SRA not Accepted	155°C×24hr in Air	
Resistance	Short	Not recognized	Not recognized	Not recognized	Not recognized	SRA not Accepted	SRA not Accepted	750° C ×2hr in DX rich gas	
Weath (powd	nering lering)	Not recognized	Not recognized	Not recognized	Not recognized	Not recognized	Not recognized	65° C , 95% humidity, 72hr	
Adheriter	Before SRA	10 mmø	10 mmø	10 mmø	10 mmø	20 mmø	10 mmø	ISO 1519 Mandrel Pipe bending	
Adhesion	After SRA	5B	5B	5B	5B	5B	5B	ASTM D3359B Cross Cut Test [0B(bad)~5B(good)]	
Resistance to refrigerants	Change of surface	Not recognized	Not recognized	Not recognized	Not recognized	-	-	R-134a/ Freol@ 15C=65g/100g	
	change of weight	Not recognized	Not recognized	Not recognized	Not recognized	-	-	(130°C,21days, 0.45um filter paper)	
Weldability		Good	Normal	Good	Normal	Not allowed	Not allowed	Current : 100-150A Ar 99% flow : 10~20L/min Speed : 0.25~0.50mpm	

Motor development process

Electromagnetic Manufacturing Design and Analysis Slitting Mechanical Cooling Electonic · Punching Drive test T-car, Pilot • T-car test

POSCO solution for EV

Material DB 700000 5.00000 7.00000 7.00000 7.00000 7.00000 7.00000 7.00000 7.00000 7.00000
 CS
 Supports
 Flux periods
 T.5

 - 50 Hz
 - 60 Hz
 - 100 Hz
 - 200 Hz
 - 600 Hz
 - 200 Hz

 - 500 Hz
 - 1000 Hz
 - 200 Hz
 - 600 Hz
 - 1000 Hz
 - 200 Hz
 · Mangetic property

· High H-field property

· MP under stress

· Ring MP

· Fatigue

· Core building factor

· Mechanical property

· Physical property

· Electronic design · Mechanical design Noise/vibration · Motor performance optimization (Efficiency, Stability, NVH) · Drive system analysis · EV electric efficiency prediction

Solution support for EV traction motor development

Solution support for EV traction motor development

Equipment for material Data Base

Magnetic property measurement

Magnetic induction and iron loss measurement (IEC, ASTM, JIS, KS, customized test)

Mechanical property measurement

Yield strength, tensile strength, hardness, fatigue limit (ISO, ASTM, JIS, KS, customized test)

Motor core property and quality evaluation

Welding, SRA, Environment, Stacking force, etc (customized test)

Motor development process

Category	Equipments	Standards
	Epstein test	IEC60404-02
Magnetic property	Single sheet test	IEC60404-03
	Ring test	IEC60404-06
Stacking factor	Stacking factor measurement	IEC60404-13
	Motor core test	-
	High H-field test	-
Specialized Magnetic property	Magnetic property under stress	-
	Magnetostriction	-
	High and low-T MP test	-
Mechanical property	Tensile test and hardness	ISO 6892-1
Durability	Fatigue test	ISO 12106
	Welding simulator	-
Manufacturing	SRA simulator	-
quality	Heat shock tester	-
	Stacking force tester	-

Heat shock tester

Motor design and analysis examples

Motor performance evaluation

FEM analysis

EV driving efficiency prediction

Applying driving cycle to motor system

Rotor mechanical- design evaluation

Stiffness analysis

Efficiency map

Efficiency calculation

Driving history

600

800

EV driving range, city mode

Self-Bonding Technology

Introduction to Self-Bonding Technology

· Self-bonding technology allows cores to be assembled by the coating itself to minimize core efficiency degradation due to the adhesion method in motor core manufacturing.

Structure and feature comparison

· SP : Self-bonding coating with high adhesion to the coating itself for high motor efficiency

No Adhesion in Teeth - Teeth vibration in use (vibration, noise)

Strong adhesion of whole surface - Reduce vibration and noise - Remove compression plates (in large size)

Manufacturing process comparison

NON-ORIENTED ELECTRICAL STEEL FOR EV TRACTION MOTOR

Copyright © 2023 by POSCO All rights reserved

Contact Us

POSCO Headquarters Global Quality & Service Management Office 6261, Donghaean-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 38759 Republic of Korea TEL 82-54-220-0114

Headquarters

6261, Donghaean-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 38759 Republic of Korea TEL 82-54-220-0114 FAX 82-54-220-6000

Seoul Office

POSCO Center, 440, Teheran-ro, Gangnam-gu, Seoul, 06194 Republic of Korea TEL 82-2-3457-0114 FAX 82-2-3457-6000

Pohang Works

6262, Donghaean-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37877 Republic of Korea TEL 82-54-220-0114 FAX 82-54-220-6000

Gwangyang Works

20-26, Pokposarang-gil, Gwangyang-si, Jeollanam-do, 57807 Republic of Korea TEL 82-61-790-0114 FAX 82-61-790-7000

